Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 13(1): 418, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964109

RESUMO

BACKGROUND: Autologous stem cell therapy is a promising strategy for cardiovascular diseases including diabetic cardiomyopathy (DCM), but conclusions from clinical trials were compromised. We assumed that diabetes might induce the dysfunction of stem cells and thus limit its therapeutic effect. This study aimed to compare the effect of diabetes and nondiabetes-derived bone marrow mesenchymal stem cells (BMSCs) transplantation on DCM and explored the potential mechanism. METHODS: Rats with diabetes were induced using high-fat diets and streptozotocin (STZ) injection. BMSCs harvested from diabetic and nondiabetic rats were infused into DCM rats, and the effects on the heart were identified by echocardiography and histopathology. The inhibition or overexpression of SAHH in nondiabetic and diabetic BMSCs was used to confirm its key role in stem cell activity and cardiac therapy. RESULTS: Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived stem cells on improving cardiac function and adverse remodeling were significantly attenuated. In vitro, diabetic BMSCs had lower cell viability and paracrine function than nondiabetic BMSCs. It was further found that diabetic BMSCs had obvious mitochondrial oxidative stress damage and S-adenosylhomocysteine (SAH) accumulation due to S-adenosylhomocysteine hydrolase (SAHH) deficiency. SAHH inhibition by adenosine dialdehyde (ADA) or shSAHH plasmid in normal BMSCs significantly reduced the favorable effects on endothelial cell proliferation and tube-forming capacity. In contrast, SAHH overexpression in diabetic BMSCs significantly improved cellular activity and paracrine function. Transplantation of BMSCs with SAHH overexpression improved cardiac adverse remodeling and angiogenesis. Activation of the Nrf2 signaling pathway may be one of the key mechanisms of SAHH-mediated improvement of stem cell viability and cardiac repair. CONCLUSIONS: Diabetes leads to compromised bioactivity and repair capacity of BMSCs. Our study suggests that SAHH activation may improve the cardioprotective effect of autologous transplantation of diabetes-derived BMSCs on patients with DCM. Diabetes induced the inhibition of S-adenosylhomocysteine (SAH) expression and aging phenotype in BMSCs and thus decreased the cell viability and paracrine function. Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived BMSCs on improving cardiac function and adverse remodeling were significantly attenuated. SAHH overexpression in diabetic BMSCs significantly rescued cellular function partly via activating Nrf2/HO-1 signal. Transplantation of diabetic BMSCs with SAHH overexpression improved angiogenesis and cardiac adverse remodeling in rats.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Células-Tronco Mesenquimais , Adenosil-Homocisteinase/metabolismo , Adenosil-Homocisteinase/farmacologia , Animais , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/terapia , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/farmacologia
2.
Mol Cell ; 22(6): 795-806, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16793548

RESUMO

The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-gated intracellular Ca2+ channels. We previously identified an IP3R binding protein, IRBIT, which binds to the IP3 binding domain of IP3R and is dissociated from IP3R in the presence of IP3. In the present study, we showed that IRBIT suppresses the activation of IP3R by competing with IP3 by [3H]IP3 binding assays, in vitro Ca2+ release assays, and Ca2+ imaging of intact cells. Multiserine phosphorylation of IRBIT was essential for the binding, and 10 of the 12 key amino acids in IP3R for IP3 recognition participated in binding to IRBIT. We propose a unique mode of IP3R regulation in which IP3 sensitivity is regulated by IRBIT acting as an endogenous "pseudoligand" whose inhibitory activity can be modulated by its phosphorylation status.


Assuntos
Adenosil-Homocisteinase/metabolismo , Sinalização do Cálcio/fisiologia , Inositol 1,4,5-Trifosfato/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Receptores Citoplasmáticos e Nucleares/agonistas , Adenosil-Homocisteinase/farmacologia , Animais , Ligação Competitiva , Células COS , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Chlorocebus aethiops , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Ligantes , Proteínas de Membrana/farmacologia , Microscopia de Fluorescência , Fosforilação , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...